Well-resolved Mössbauer Spectra for Spin-isomeric Tris(monothio-β-diketonato)-iron(III) Compounds

By M. Cox and J. DARKEN

(The Polytechnic, Hatfield, Herts.)

B. W. FITZSIMMONS* and A. W. SMITH

[Department of Chemistry, Birkbeck College (University of London), Malet Street, London, W.C.1]

and L. F. LARKWORTHY and K. A. ROGERS (*The University of Surrey, Guildford*)

Summary The coexistence of individual spin isomers has been observed in the Mössbauer spectra of tris(monothio- β -diketonato)-iron(III) complexes.

ALTHOUGH the concept of thermal equilibrium between ${}^{6}A_{1}$ and ${}^{2}T_{2}$ spin isomers accounts for the magnetic susceptibility data observed^{1,2} for tris-(NN-dialkyldithiocarbamato)-iron-(III) complexes, unfavourable relaxation times prevent the detection of the individual isomers using Mössbauer spectroscopy. We have investigated a different system which is more favourable in this respect, specifically tris(monothio- β -diketonato)-iron(III) complexes, (I), for which spin isomerism was discovered by Ho and Livingstone³ using paramagnetic measurements. We have measured paramagnetic susceptibilities and Mössbauer spectra in the temperature range 80—300° κ of four compounds of general formula (I).

 $Fe\begin{bmatrix} S & R^{1} \\ 0 & R^{2} \end{bmatrix}_{3}^{(Ia)} \begin{bmatrix} Ia \\ (Ib \\ R^{1} = R^{2} = Ph \\ (Ib \\ R^{1} = R^{2} = Me \\ (Ic) \\ R^{1} = Me, R^{2} = Ph \\ (Id) \\ R^{1} = Ph, R^{2} = Me \end{bmatrix}$

Compound (Ia) has been prepared before.³ The other compounds are new and were prepared by the reaction of freshly synthesised ligand⁴ with anhydrous iron(III) chloride in the presence of triethylamine in suitable solvents. The ligands were prepared by a multistage synthesis⁴ which enabled us to prepare geometrical isomers (Ic) and (Id). Preparation of the ligand from the parent β -diketone allows the synthesis of isomer (Ic) only.⁵

The important feature of the Mössbauer study is that both spin-isomers can be seen in the Mössbauer spectrum if present in appreciable amounts. A typical example is provided by compound (Ia) (see Table and Figure 1 and 2).

FIGURE 1. The Mössbauer spectrum at 80°K of compound (Ia).

FIGURE 2. Variation of effective magnetic moment, μ_{elt} , with absolute temperature for compounds (Ia), (Ib), and (Ic). Dashed curve shows previous³ results for compound (Ia).

Mössbauer parameters* for tris(monothio- β -diketonato)-iron(III) compounds

			300° ĸ				80°ĸ			
			High-spin		Low-spin		High-spin		Low-spin	
			ΔE	δ	ΔE	δ	ΔE $$	δ	ΔE	δ
(Ia)			0.61	0.65	_		0.93	0.65	1.90	0.60
ÌΙb)	••	••	0.26	0.75					0.24	0.52
(Ic)	••	••	0.56	0.60	1.47	0.57			1.91	0.61
(Id)†	••		_				0.00	0.85	1.68	0.58

* ΔE is the quadrupole splitting and δ the chemical isomeric shift relative to disodium pentacyanonitrosylferrate(II); † Room temperature spectrum too weak to measure.

Peaks 1 and 2 (Figure 1) are assigned to the low-spin $({}^{2}T_{2})$ isomer whilst peaks 3 and 4, corresponding to a much lower quadrupole splitting, are due to the high-spin $({}^{6}A_{1})$ isomer. The observed quadrupole splittings have values similar to

those previously obtained for ${}^{2}T_{2}$ and ${}^{6}A_{1}$ iron(III) compounds.⁶ Because the ligand field is close to the critical cross-over value, the chemical isomeric shifts are not expected to be much different as is here observed. As can be seen from

Figure 1, the low-spin form predominates at this temperature in agreement with the observed magnetic moment of 2.80BM, which is somewhat higher than the previously reported value.³ The magnetic moments at the higher temperatures agree well (Figure 2).

Compound (Ib) shows a sharp transition between the 6A_1 and 2T_2 states at ca. 150° k but the Mössbauer spectra of the two forms are very similar. Neither spin isomer appears to have appreciable quadrupole splitting and we conclude that this is a case where the ferric ion lies at a site of nearcubic symmetry despite the presence of asymmetric chelating ligands. Compound (Ic) behaves similarly to (Ia); no trace of the ${}^{6}A_{1}$ state can be seen in the Mössbauer spectrum at 80° k whilst both are clearly discernible at 300° k in

agreement with the magnetic data (Figure 2). Compound (Id) does not give a satisfactory Mössbauer spectrum at $300^{\circ}\kappa$ but both spin-isomers can be seen at $80^{\circ}\kappa$ and the correlation with the magnetic data is good ($\mu_{eff} = 5.75 \text{ BM}$ at 300° k and 4.95 BM at 87° k).

This is the first observation of spin isomers by Mössbauer spectroscopy in a ${}^{6}A_{1} \rightleftharpoons {}^{2}T_{2}$ cross-over situation. It is reasonable to conclude that the relaxation time to change from one spin-state to another is long compared with the effective quadrupole period in contrast to the behaviour so far reported for the Fe^{III} trisdithiocarbamato-complexes which exhibit time-averaged spectra of only two lines whose separation varies slightly with temperature.

(Received, November 27th, 1969; Com. 1806.)

- ¹ R. L. Martin and A. H. White, *Transition Metal Chem.*, 1968, **4**, 113. ² A. H. Ewald, R. L. Martin, E. Sinn, and A. H. White, *Inorg. Chem.*, 1969, **8**, 1837.

- ³ R. K. Y. Ho and S. E. Livingstone, Austral. J. Chem., 1968, 21, 1987.
 ⁴ E. Uhlemann and P. Thomas, J. prakt. Chem., 1966, 34, 180.
 ⁵ S. H. H. Chaston, S. E. Livingstone, E. N. Lockyer, V. S. Pickles, and J. S. Shannon, Austral. J. Chem., 1965, 18, 673.
- ⁶ R. R. Berrett, B. W. Fitzsimmons, and A. A. Owusu, J. Chem. Soc. (A), 1968, 1575.